Star formation near the Sun is driven by local bubble expansion

Cox, DP & Reynolds, RJ The local interstellar medium. Ann. Reverend Astron. Astrophysic. 25, 303–344 (1987).
Lucke, PB The distribution of excess color and interstellar reddening material in the solar neighborhood. Star. Astrophysic. 64, 367–377 (1978).
Google Scholar
Sanders, WT, Kraushaar, WL, Nousek, JA & Fried, PM Soft Diffuse X-Rays in the Southern Galactic Hemisphere. Astrophysic. J. Lett. 217, L87–L91 (1977).
Lallement, R., Welsh, BY, Vergely, JL, Crifo, F. & Sfeir, D. 3D mapping of dense interstellar gas around the local bubble. Star. Astrophysic. 411, 447–464 (2003).
Welsh, BY, Lallement, R., Vergely, J.-L. & Raimond, S. New 3D gas density maps of interstellar NaI and CaII absorption below 300 pc. Star. Astrophysic. 510, A54 (2010).
Google Scholar
Fuchs, B., Breitschwerdt, D., de Avillez, MA, Dettbarn, C. & Flynn, C. The search for the origin of the local bubble redivivus. Mon. No. R.Astron. Soc. 373, 993–1003 (2006).
Breitschwerdt, D. et al. The locations of recent supernovae near the Sun from modeling 60Do transport. Nature. 532, 73–76 (2016).
Google Scholar
Frisch, P. & Dwarkadas, VV en Supernova Handbook (eds Alsabti, AW & Murdin, P.) 2253–2285 (Springer International Publishing, 2017).
Leike, RH, Glatzle, M. & Enßlin, TA Resolution of nearby dust clouds. Star. Astrophysic. 639, A138 (2020).
Lallement, R. et al. Gaia-2MASS 3D maps of galactic interstellar dust within 3 kpc. Star. Astrophysic. 625, A135 (2019).
Zucker, C. et al. On the three-dimensional structure of local molecular clouds. Astrophysic. J. 919, 35 (2021).
Lindegren, L. et al. Gaia Early Data Release 3 – the astrometric solution. Star. Astrophysic. Supplement Ser. 649, A2 (2021).
Google Scholar
Pelgrims, V., Ferrière, K., Boulanger, F., Lallement, R. & Montier, L. Modeling of the magnetized local bubble from dust data. Star. Astrophysic. 636, A17 (2020).
Google Scholar
Welsh, BY, Sfeir, DM, Sirk, MM & Lallement, R. EUV Mapping of the local interstellar medium: the local chimney revealed? Star. Astrophysic. 352, 308–316 (1999).
Bialy, S. et al. The Per-Tau Shell: A giant star-forming spherical shell revealed by 3D dust observations. Astrophysic. J. Lett. 919, L5 (2021).
Alves, J. et al. A galactic-scale wave of gas in the solar neighborhood. Nature. 578, 237-239 (2020).
Google Scholar
Großschedl, J.E., Alves, J., Meingast, S. & Herbst-Kiss, G. 3D dynamics of the Orion cloud complex – discovery of coherent radial gas motions at 100 pc scale. Star. Astrophysic. Supplement Ser. 647, A91 (2021).
Google Scholar
Perrot, CA & Grenier, IA 3D dynamic evolution of interstellar gas in the Gould Belt. Star. Astrophysic. Supplement Ser. 404, 519–531 (2003).
Dzib, SA, Loinard, L., Ortiz-León, GN, Rodríguez, LF & Galli, PAB Distances and kinematics of Gould belt star forming regions with Gaia DR2 results. Astrophysic. J. 867, 151 (2018).
Kerr, RMP, Rizzuto, AC, Kraus, AL & Offner, SSR Stars with Photometrically Young Gaia Luminosities Around the Solar System (SPYGLASS). I. Map young stellar structures and their star formation histories. Astrophysic. J. 917, 23 (2021).
Maíz-Apellániz, J. The origin of the local bubble. Astrophysic. J. Lett. 560, L83–L86 (2001).
Google Scholar
El-Badry, K., Ostriker, EC, Kim, C.-G., Quataert, E. & Weisz, DR Supernova-driven superbubble evolution with conduction and cooling. Mon. No. R.Astron. Soc. 490, 1961–1990 (2019).
Inutsuka, S.-I., Inoue, T., Iwasaki, K. & Hosokawa, T. The formation and destruction of molecular clouds and the formation of galactic stars. An origin for cloud mass function and star formation efficiency. Star. Astrophysic. 580, A49 (2015).
Google Scholar
Dawson, JR The supershell-molecular cloud connection: large-scale stellar feedback and the formation of the molecular ISM. Publ. Star. Soc. August. 30, e025 (2013).
Google Scholar
Cox, DP & Smith, BW Large-scale effects of supernova remnants on the Galaxy: generation and maintenance of a hot network of tunnels. Astrophysic. J. Lett. 189, L105–L108 (1974).
McKee, CF & Ostriker, JP A theory of the interstellar medium: three components regulated by supernova explosions in an inhomogeneous substrate. Astrophysic. J. 218, 148–169 (1977).
Kim, C.-G., Ostriker, EC & Raileanu, R. Superbubbles in multiphase ISM and galactic wind loading. Astrophysic. J. 834, 25 (2017).
Google Scholar
Galli, PAB et al. Lupus DANCE. Star census and 6D structure with Gaia-DR2 data. Star. Astrophysic. 643, A148 (2020).
Google Scholar
Grasser, N. et al. The ρ Oph region revisited with Gaia EDR3. Star. Astrophysic. 652, A2 (2021)
Google Scholar
Galli, PAB et al. Chameleon dance. Revisiting the stellar populations of Chamaeleon I and Chamaeleon II with data from Gaia-DR2. Star. Astrophysic. 646, A46 (2021).
Google Scholar
Galli, PAB et al. Corona-Australis dance. I. Revisiting star census with Gaia-DR2 data. Star. Astrophysic. 634, A98 (2020).
Google Scholar
Krolikowski, DM, Kraus, AL & Rizzuto, AC Gaia EDR3 reveals the substructure and complicated star formation history of the Greater Taurus-Auriga star formation complex. Star. J. 162, 3 (2021).
Google Scholar
Gagne, J. & Faherty, JK BANYAN. XIII. A first glimpse of young associations nearby with Gaia Data Release 2. Astrophysic. J. 862, 138 (2018).
Google Scholar
Gagne, J. et al. BANYAN. XI. The BANYAN Σ multivariate Bayesian algorithm for identifying members of young associations with 150 pc. Astrophysic. J. 856, 23 (2018).
Google Scholar
Ortiz-Leon, GN et al. The Gould Belt Distance Survey (GOBELINS). V. Distances and kinematics of the molecular cloud of Perseus. Astrophysic. J. 865, 73 (2018).
Google Scholar
Herczeg, GJ et al. A first look at the extent and structure of recent star formation in the Serpens Molecular Cloud using Gaia Data Release 2. Astrophysic. J. 878, 111 (2019).
Fabricius, C. et al. Gaia Early Data Release 3 – catalog validation. Star. Astrophysic. Supplement Ser. 649, A5 (2021).
Google Scholar
The Astropy collaboration. The Astropy project: construction of an open science project and status of the v2.0 Core Package*. Star. J. Supp. 156, 123 (2018).
Google Scholar
Bovy, J., Hogg, DW & Roweis, ST Extreme deconvolution: inferring complete distribution functions from noisy, heterogeneous and incomplete observations. Ann. Appl. Statistical 5, 1657-1677 (2011).
Google Scholar
Bovy, J. galpy: a Python library for galactic dynamics. Astrophysic. J. Supp. 216, 29 (2015).
Google Scholar
Kerr, FJ & Lynden-Bell, D. Review of Galactic Constants. Mon. No. R.Astron. Soc. 221, 1023-1038 (1986).
Google Scholar
Kamdar, H., Conroy, C. & Ting, Y.-S. Stellar fluxes in the galactic disk: predicted lifetimes and their usefulness for measuring galactic potential. Preprint at https://arxiv.org/abs/2106.02050v1 (2021).
Speagle, JS dynesty: A nested dynamic sampling ensemble for estimating Bayesian posteriors and evidence. Mon. No. R.Astron. Soc. 493, 3132–3158 (2020).
Google Scholar
Salpeter, EE The luminosity function and stellar evolution. Astrophysic. J. 121, 161 (1955).
Google Scholar
Goncharov, G. & Mosenkov, A. Interstellar Polarization and Extinction in the Local Bubble and Gould Belt. Mon. No. R.Astron. Soc. 483, 299-314 (2019).
Dehnen, W. & Binney, JJ Local stellar kinematics from Hipparcos data. Mon. No. R.Astron. Soc. 298, 387–394 (1998).
Google Scholar
Francis, C. & Anderson, E. Calculation of the local rest norm from 20574 local stars in the New Hipparcos reduction with known radial velocities. New Star. 14, 615–629 (2009).
Google Scholar
Wang, F. et al. Local stellar kinematics and Oort constants of LAMOST A-type stars. Mon. No. R.Astron. Soc. 504, 199-207 (2021).
Google Scholar
Reid, MJ et al. Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophysic. J. 885, 131 (2019).
Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and local norm of rest. Mon. No. R.Astron. Soc. 403, 1829–1833 (2010).
Google Scholar
VanderPlas, J., Connolly, AJ, Ivezić, Ž. & Gray, A. Introduction to astroML: machine learning for astrophysics. In Process. 2012 Intelligent Data Understanding Conference 47–54 (IEEE, 2012).