Bond Cliff

Main Menu

  • Home
  • Economic integration
  • Price index
  • Covariance
  • Labor augmenting
  • Fund

Bond Cliff

Header Banner

Bond Cliff

  • Home
  • Economic integration
  • Price index
  • Covariance
  • Labor augmenting
  • Fund
Covariance
Home›Covariance›Star formation near the Sun is driven by local bubble expansion

Star formation near the Sun is driven by local bubble expansion

By Susan Weiner
January 12, 2022
0
0
  • 1.

    Cox, DP & Reynolds, RJ The local interstellar medium. Ann. Reverend Astron. Astrophysic. 25, 303–344 (1987).

    ADS
    CASE

    Google Scholar

  • 2.

    Lucke, PB The distribution of excess color and interstellar reddening material in the solar neighborhood. Star. Astrophysic. 64, 367–377 (1978).

    ADS

    Google Scholar

  • 3.

    Sanders, WT, Kraushaar, WL, Nousek, JA & Fried, PM Soft Diffuse X-Rays in the Southern Galactic Hemisphere. Astrophysic. J. Lett. 217, L87–L91 (1977).

    ADS
    CASE

    Google Scholar

  • 4.

    Lallement, R., Welsh, BY, Vergely, JL, Crifo, F. & Sfeir, D. 3D mapping of dense interstellar gas around the local bubble. Star. Astrophysic. 411, 447–464 (2003).

    ADS
    CASE

    Google Scholar

  • 5.

    Welsh, BY, Lallement, R., Vergely, J.-L. & Raimond, S. New 3D gas density maps of interstellar NaI and CaII absorption below 300 pc. Star. Astrophysic. 510, A54 (2010).

    Google Scholar

  • 6.

    Fuchs, B., Breitschwerdt, D., de Avillez, MA, Dettbarn, C. & Flynn, C. The search for the origin of the local bubble redivivus. Mon. No. R.Astron. Soc. 373, 993–1003 (2006).

    ADS
    CASE

    Google Scholar

  • seven.

    Breitschwerdt, D. et al. The locations of recent supernovae near the Sun from modeling 60Do transport. Nature. 532, 73–76 (2016).

    ADS
    CASE
    PubMed

    Google Scholar

  • 8.

    Frisch, P. & Dwarkadas, VV en Supernova Handbook (eds Alsabti, AW & Murdin, P.) 2253–2285 (Springer International Publishing, 2017).

  • 9.

    Leike, RH, Glatzle, M. & Enßlin, TA Resolution of nearby dust clouds. Star. Astrophysic. 639, A138 (2020).

    ADS
    CASE

    Google Scholar

  • ten.

    Lallement, R. et al. Gaia-2MASS 3D maps of galactic interstellar dust within 3 kpc. Star. Astrophysic. 625, A135 (2019).

    CASE

    Google Scholar

  • 11.

    Zucker, C. et al. On the three-dimensional structure of local molecular clouds. Astrophysic. J. 919, 35 (2021).

    ADS
    CASE

    Google Scholar

  • 12.

    Lindegren, L. et al. Gaia Early Data Release 3 – the astrometric solution. Star. Astrophysic. Supplement Ser. 649, A2 (2021).

    Google Scholar

  • 13.

    Pelgrims, V., Ferrière, K., Boulanger, F., Lallement, R. & Montier, L. Modeling of the magnetized local bubble from dust data. Star. Astrophysic. 636, A17 (2020).

    ADS

    Google Scholar

  • 14.

    Welsh, BY, Sfeir, DM, Sirk, MM & Lallement, R. EUV Mapping of the local interstellar medium: the local chimney revealed? Star. Astrophysic. 352, 308–316 (1999).

    ADS
    CASE

    Google Scholar

  • 15.

    Bialy, S. et al. The Per-Tau Shell: A giant star-forming spherical shell revealed by 3D dust observations. Astrophysic. J. Lett. 919, L5 (2021).

    ADS
    CASE

    Google Scholar

  • 16.

    Alves, J. et al. A galactic-scale wave of gas in the solar neighborhood. Nature. 578, 237-239 (2020).

    ADS
    CASE
    PubMed

    Google Scholar

  • 17.

    Großschedl, J.E., Alves, J., Meingast, S. & Herbst-Kiss, G. 3D dynamics of the Orion cloud complex – discovery of coherent radial gas motions at 100 pc scale. Star. Astrophysic. Supplement Ser. 647, A91 (2021).

    Google Scholar

  • 18.

    Perrot, CA & Grenier, IA 3D dynamic evolution of interstellar gas in the Gould Belt. Star. Astrophysic. Supplement Ser. 404, 519–531 (2003).

    CASE

    Google Scholar

  • 19.

    Dzib, SA, Loinard, L., Ortiz-León, GN, Rodríguez, LF & Galli, PAB Distances and kinematics of Gould belt star forming regions with Gaia DR2 results. Astrophysic. J. 867, 151 (2018).

    ADS
    CASE

    Google Scholar

  • 20.

    Kerr, RMP, Rizzuto, AC, Kraus, AL & Offner, SSR Stars with Photometrically Young Gaia Luminosities Around the Solar System (SPYGLASS). I. Map young stellar structures and their star formation histories. Astrophysic. J. 917, 23 (2021).

    ADS
    CASE

    Google Scholar

  • 21.

    Maíz-Apellániz, J. The origin of the local bubble. Astrophysic. J. Lett. 560, L83–L86 (2001).

    ADS

    Google Scholar

  • 22.

    El-Badry, K., Ostriker, EC, Kim, C.-G., Quataert, E. & Weisz, DR Supernova-driven superbubble evolution with conduction and cooling. Mon. No. R.Astron. Soc. 490, 1961–1990 (2019).

    ADS
    CASE

    Google Scholar

  • 23.

    Inutsuka, S.-I., Inoue, T., Iwasaki, K. & Hosokawa, T. The formation and destruction of molecular clouds and the formation of galactic stars. An origin for cloud mass function and star formation efficiency. Star. Astrophysic. 580, A49 (2015).

    Google Scholar

  • 24.

    Dawson, JR The supershell-molecular cloud connection: large-scale stellar feedback and the formation of the molecular ISM. Publ. Star. Soc. August. 30, e025 (2013).

    ADS

    Google Scholar

  • 25.

    Cox, DP & Smith, BW Large-scale effects of supernova remnants on the Galaxy: generation and maintenance of a hot network of tunnels. Astrophysic. J. Lett. 189, L105–L108 (1974).

    ADS
    CASE

    Google Scholar

  • 26.

    McKee, CF & Ostriker, JP A theory of the interstellar medium: three components regulated by supernova explosions in an inhomogeneous substrate. Astrophysic. J. 218, 148–169 (1977).

    ADS
    CASE

    Google Scholar

  • 27.

    Kim, C.-G., Ostriker, EC & Raileanu, R. Superbubbles in multiphase ISM and galactic wind loading. Astrophysic. J. 834, 25 (2017).

    ADS

    Google Scholar

  • 28.

    Galli, PAB et al. Lupus DANCE. Star census and 6D structure with Gaia-DR2 data. Star. Astrophysic. 643, A148 (2020).

    Google Scholar

  • 29.

    Grasser, N. et al. The ρ Oph region revisited with Gaia EDR3. Star. Astrophysic. 652, A2 (2021)

    Google Scholar

  • 30.

    Galli, PAB et al. Chameleon dance. Revisiting the stellar populations of Chamaeleon I and Chamaeleon II with data from Gaia-DR2. Star. Astrophysic. 646, A46 (2021).

    Google Scholar

  • 31.

    Galli, PAB et al. Corona-Australis dance. I. Revisiting star census with Gaia-DR2 data. Star. Astrophysic. 634, A98 (2020).

    Google Scholar

  • 32.

    Krolikowski, DM, Kraus, AL & Rizzuto, AC Gaia EDR3 reveals the substructure and complicated star formation history of the Greater Taurus-Auriga star formation complex. Star. J. 162, 3 (2021).

    Google Scholar

  • 33.

    Gagne, J. & Faherty, JK BANYAN. XIII. A first glimpse of young associations nearby with Gaia Data Release 2. Astrophysic. J. 862, 138 (2018).

    ADS

    Google Scholar

  • 34.

    Gagne, J. et al. BANYAN. XI. The BANYAN Σ multivariate Bayesian algorithm for identifying members of young associations with 150 pc. Astrophysic. J. 856, 23 (2018).

    ADS

    Google Scholar

  • 35.

    Ortiz-Leon, GN et al. The Gould Belt Distance Survey (GOBELINS). V. Distances and kinematics of the molecular cloud of Perseus. Astrophysic. J. 865, 73 (2018).

    ADS

    Google Scholar

  • 36.

    Herczeg, GJ et al. A first look at the extent and structure of recent star formation in the Serpens Molecular Cloud using Gaia Data Release 2. Astrophysic. J. 878, 111 (2019).

    ADS
    CASE

    Google Scholar

  • 37.

    Fabricius, C. et al. Gaia Early Data Release 3 – catalog validation. Star. Astrophysic. Supplement Ser. 649, A5 (2021).

    Google Scholar

  • 38.

    The Astropy collaboration. The Astropy project: construction of an open science project and status of the v2.0 Core Package*. Star. J. Supp. 156, 123 (2018).

    ADS

    Google Scholar

  • 39.

    Bovy, J., Hogg, DW & Roweis, ST Extreme deconvolution: inferring complete distribution functions from noisy, heterogeneous and incomplete observations. Ann. Appl. Statistical 5, 1657-1677 (2011).

    ADS
    MathSciNet
    MATH

    Google Scholar

  • 40.

    Bovy, J. galpy: a Python library for galactic dynamics. Astrophysic. J. Supp. 216, 29 (2015).

    ADS

    Google Scholar

  • 41.

    Kerr, FJ & Lynden-Bell, D. Review of Galactic Constants. Mon. No. R.Astron. Soc. 221, 1023-1038 (1986).

    ADS

    Google Scholar

  • 42.

    Kamdar, H., Conroy, C. & Ting, Y.-S. Stellar fluxes in the galactic disk: predicted lifetimes and their usefulness for measuring galactic potential. Preprint at https://arxiv.org/abs/2106.02050v1 (2021).

  • 43.

    Speagle, JS dynesty: A nested dynamic sampling ensemble for estimating Bayesian posteriors and evidence. Mon. No. R.Astron. Soc. 493, 3132–3158 (2020).

    ADS

    Google Scholar

  • 44.

    Salpeter, EE The luminosity function and stellar evolution. Astrophysic. J. 121, 161 (1955).

    ADS

    Google Scholar

  • 45.

    Goncharov, G. & Mosenkov, A. Interstellar Polarization and Extinction in the Local Bubble and Gould Belt. Mon. No. R.Astron. Soc. 483, 299-314 (2019).

    ADS
    CASE

    Google Scholar

  • 46.

    Dehnen, W. & Binney, JJ Local stellar kinematics from Hipparcos data. Mon. No. R.Astron. Soc. 298, 387–394 (1998).

    ADS

    Google Scholar

  • 47.

    Francis, C. & Anderson, E. Calculation of the local rest norm from 20574 local stars in the New Hipparcos reduction with known radial velocities. New Star. 14, 615–629 (2009).

    ADS

    Google Scholar

  • 48.

    Wang, F. et al. Local stellar kinematics and Oort constants of LAMOST A-type stars. Mon. No. R.Astron. Soc. 504, 199-207 (2021).

    ADS

    Google Scholar

  • 49.

    Reid, MJ et al. Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophysic. J. 885, 131 (2019).

    ADS
    CASE

    Google Scholar

  • 50.

    Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and local norm of rest. Mon. No. R.Astron. Soc. 403, 1829–1833 (2010).

    ADS

    Google Scholar

  • 51.

    VanderPlas, J., Connolly, AJ, Ivezić, Ž. & Gray, A. Introduction to astroML: machine learning for astrophysics. In Process. 2012 Intelligent Data Understanding Conference 47–54 (IEEE, 2012).

  • Related posts:

    1. New algorithm from Facebook researcher ushers in new image recognition paradigm
    2. Interprofessional collaboration between audiologists, speech therapists: The Hearing Journal
    3. Increasing the Acceptability and Expected Outcomes of Internet-Based Cognitive Behavioral Therapy During the COVID-19 Pandemic
    4. Urban emissions, air quality and heat: CSU researchers receive more than $ 2.2 million

    Categories

    • Covariance
    • Economic integration
    • Fund
    • Labor augmenting
    • Price index
    • TERMS AND CONDITIONS
    • Privacy Policy